
1 | P a g e H M H M a r 2 2 , 2 0 2 0

Mind your distance! Adding wireless control to TI-Rover

1. Project description

Develop a concept to implement a wireless R/C model control system to control speed and
direction of TI-Rover, meeting requirements as follows:

a. Use a OEM Spektrum DSMx remote control using PWM to transmit control stick
position to Rover

b. Convert DSMx PWM signals to analog voltage levels
c. Use IN1/2/3 as analog voltage inputs for TI-Rover
d. Create a Control Stick calibration program which allows universal adaptation of

individual analog input voltage level swing and offset
e. Create a main control program using the parameters as generated by the Control

Stick calibration program, supporting features as follows:
i. TI-Rover should not move when Gas and Steering stick is in neutral

position
ii. TI-Rover speed and direction should be proportional to Gas stick position

and direction (forward/backward)
iii. TI-Rover turn radius should be proportional to Steering stick position and

direction (left/right)

2 | P a g e H M H M a r 2 2 , 2 0 2 0

2. Spektrum DSMx components

A DX6i 2.4GHz transmitter and a 4-channel AR400 Sport Receiver are used as shown
here. Any model R/C transceiver system creating a Pulse Width Modulation (PWM)
output at the receiver side with a minimum of 2 channels can be used.

Figure 1 – Spektrum Transmitter

Figure 2 – Spektrum Receiver

The PWM Protocol creates a square wave signal per channel, at a frequency of about
50Hz. Stick position is translated into the pulse width of this square wave, ranging from
1000us up to 2000us. Center point (sticks are in neutral position) is at about 1500us.

3. The Receiver-to-Rover Hardware interface challenge

All BB pins of the TI-Innovator Hub residing in the TI-Rover are used up by the Hub-to-
Rover interface. 3 input ports (IN1/2/3) and 3 output ports (OUT1/2/3) are the only
interface ports available in the TI-Rover application.
Currently, there is no reliable and fast method implemented in the TI-Hub firmware to
measure digital input pulse width generated by a PWM signal. An adapter is needed to
convert the PWM signal of the DSMx receiver to an electrical signal the TI-Hub can
measure precisely and fast. This led to the PWM-to-Analog converter chip LTC2644
designed by Analog Devices.
The DSMx receiver’s PWM output signal frequency of only 50Hz, paired with a PWM
range of 1000us-2000us results in a rather low PWM swing of 4.5-9%. This results in
only 9% of the total available output voltage swing of the LTC2644 can be used in this
application. Therefore, the 3.3V IN1 and IN2 ports are used, to maximize utilization of
the resolution of the TI-Hub built-in Analog-to-Digital converter.

3 | P a g e H M H M a r 2 2 , 2 0 2 0

Last but not least, the Spektrum AR400 receiver’s minimum Vcc is 5V, so a third
interface cable to the Hub’s IN3 port is needed, to be the power source for both, AR400
and the LTC2644.

4. Wireless Interface Board

Figure 3 – Velcro mount of I/F board

Figure 5 – LTC2644 mounted on breakout
board along with SMD Capacitors

Figure 4 – I/F board

Figure 6 – Wiring I/F board to TI-Hub

4 | P a g e H M H M a r 2 2 , 2 0 2 0

Figure 7 – Interface Board Schematic

The interface board is built on a prototype board, with all leads manually soldered (no PCB
traces). Figure 3 to 6 illustrate the wiring and Velcro mount to the TI-Rover’s side.
Unfortunately, there is no Grove board available supporting the LTC2644, so a breakout board
is used to adapt the MSOP surface mount package of the LTC2644 to a dual-in-line throughhole-
mount package form factor.
The 4k7 / 10uF components connected to VoutA and VoutB outputs are used as a low pass filter
to reduce the PWM jitter of the AR400, which would otherwise be translated into an analog
signal jitter fed into the TI-Hub.

5 | P a g e H M H M a r 2 2 , 2 0 2 0

5. TI-Innovator Hub Programs

The TI-Innovator Hub Program consists of three important elements:

 calsticks() Program to calibrate analog signal swing, center points,
noise/deadband

 main() Program to control TI-Rover motors via the Send “Set rv.motors xxx yyy”
command

 map(x,in_min,in_max,out_min,out_max) function to translate analog voltages to
motor PWM values

See code listings in the Appendix.

6. calsticks() Program

Analog voltage for controlling Speed and Direction (forward/backward) of the TI-Rover
is supplied into IN1. Maximum analog voltage will result in maximum speed forward,
minimum analog voltage will result in maximum speed backward. Stick neutral will be in
between max and min input voltage and result in TI-Rover not moving.
Analog voltage for controlling turns (steering) of the TI-Rover is supplied into IN2.
There are 5 turn behavioral states:

a. Steering stick is at neutral: both wheels spin at the same speed (either forward
or backward, depending on gas stick)

b. Steering stick is moved to less than 50% to the left: right wheel will spin at gas
stick speed, but left wheel will turn at a slower speed, down to zero speed at
50% stick position left .

c. Steering stick is moved to more than 50% to the left: right wheel will continue
spinning at Gas stick speed, left wheel will start spinning in the opposite
direction as before, ending up at same speed of spin, opposite direction, when
steering stick is fully moved to the left. Rover turns around its front wheel axis’
center point.

d. Steering stick is moved to less than 50% to the right: same as under (b) above,
but opposite wheels

e. Steering stick is moved to more than 50% to the right: same as under (c) above,
but opposite wheels

Gas stick will control the speed of the turn overall.
calsticks() will measure center points, minimum and maximum stick analog voltages and
necessary deadband needed to filter system noise when sticks are in neutral and
extreme positions and store these values in global variables to be used by the main()
program.

6 | P a g e H M H M a r 2 2 , 2 0 2 0

calsticks() is cycling through 3 steps:
a. Measure center points and noise of both, gas and steering input voltages. Do not

touch sticks during that phase. Observe the ‘jitter’ for gas and steering on the
display. If you do not see a change in minimum and maximum values, proceed to
the next step by pressing any key on the nSpire handheld.

b. Move Gas stick to the minimum and maximum position. It does not matter
whichever you do first. Observe min and max gas values. If you no longer see a
change, proceed to the next step by pressing any key on the handheld.

c. Move Steering stick to the minimum and maximum position. Press any key to
finish the calsticks() program.

A maximum deadband of +/- 8 digits is still acceptable, a good analog voltage supply
should have a deadband of not more than +/-3 digits. If you encounter higher values,
you should tune your analog system by changing the low pass filter components of the
interface board.

7. main() program

main() uses the global variables created by calsticks(). It’s essential that execution of
main() is preceeded by a proper calsticks() run. Here’s a list of the global variables and
their meaning:

 dbandgl: Gas neutral lower Deadband
 dbandgh: Gas neutral upper Deadband
 dbandsl: Steering neutral lower Deadband
 dbandsh: Steering neutral upper Deadband
 ming: Rover full speed backward
 maxg: Rover full speed forward
 mins: minimum radius left turn
 maxs: minimum radius right turn

There is a <debug> switch variable (line 8) which allows the print out of a couple key
variables at run time, if a system debug is needed. <debug> mode will slow down the
entire Rover update loop, resulting in a longer latency and less responsive behavior of
the TI-Rover to stick movements. In normal operation, <debug> should be set to <false>.

main() supports stick reversal, in order to support other analog voltage systems/sensors
than the Spektrum system described here. For example, you could use an ADXL335
Grove sensor to supply analog voltage based on sensor tilt information into IN1/2. This
may require a ‘stick reversal’ of either Gas or Steering or both, depending on the way
the Grove sensor is held or mounted. The same may apply when using the 3-axis
accelerometer from Vernier.

7 | P a g e H M H M a r 2 2 , 2 0 2 0

If <reverseg> and <reverses> are set to <false>, the following input voltage to control
behavior applies:

- low gas: Rover full speed backwards
- high gas: Rover full speed forward
- low steering: Rover full left turn
- high steering: Rover full right turn

Setting <reverseg> to <true> would result in low gas – full speed forward and high gas –
full speed backward.

8. map() function

The map() function is a powerful math function to scale virtually any input range to any
output range, as long as the input-to-output behavior has a linear dependency. This
makes the Rover main() program so versatile. The program does not need to know the
absolute analog gas input voltage or which sensor feeds the analog voltage. It just
translates whatever the analog input voltage range is into the 8-bit (0-255) range of the
Rovers rv.motors motor control command. Even better, for steering control it
‘automatically’ translates the complex inner wheel movement behavior based on the
steering stick, from 255-to-0-to-negative255.

8 | P a g e H M H M a r 2 2 , 2 0 2 0

9. Appendix – code listing

Define calsticks()=
Prgm
:
:Local i,firstrun,gas,steer,dbandg,dbands,stat
:
:Send "CONNECT ANALOG.IN 1 IN 1"
:Send "CONNECT ANALOG.IN 2 IN 2"
:
:firstrun:=true
:
:DispAt 1,"Measuring Deadband, don't move sticks"
:While getKey()=""
: If firstrun=true Then
: Send "READ ANALOG.IN 1"
: Get gas,stat
: While stat=0
: Get gas,stat
: EndWhile
: Send "READ ANALOG.IN 2"
: Get steer
: ming:=gas
: maxg:=gas
: mins:=steer
: maxs:=steer
: firstrun:=false
: EndIf
: Send "READ ANALOG.IN 1"
: Get gas
: Send "READ ANALOG.IN 2"
: Get steer
: If gas>maxg Then
: maxg:=gas
: ElseIf gas<ming Then
: ming:=gas
: EndIf
: If steer>maxs Then
: maxs:=steer
: ElseIf steer<mins Then
: mins:=steer
: EndIf
: DispAt 2,"Gas: ",gas,"Min:",ming," Max: ",maxg
: DispAt 3,"Steer: ",steer,"Min:",mins," Max: ",maxs
:EndWhile
:dbandg:=int(((maxg-ming)/(2)))
:dbands:=int(((maxs-mins)/(2)))
:dbandgl:=ming
:dbandgh:=maxg
:dbandsl:=mins
:dbandsh:=maxs
:
:DispAt 1,"Gas ","Deadband: +/- ",dbandg
:DispAt 2,"Steering ","Deadband: +/- ",dbands
:

Stick calibration program

Gas input
Steering input

Step 1: Measure center points and noise
Get initial values to set initial min and max values

Sometimes Hub is slow on the initial read, this is to
avoid a ‘variable error’ at runtime

Here the center point/deadband loop starts

Key is pressed, calculate deadband and global variables

Display results

9 | P a g e H M H M a r 2 2 , 2 0 2 0

:DispAt 3,"Move Gas forward, then backward."
:While getKey()=""
: Send "READ ANALOG.IN 1"
: Get gas
: If gas>maxg Then
: maxg:=gas
: ElseIf gas<ming Then
: ming:=gas
: EndIf
: DispAt 4,"Gas: ",gas,"Min:",ming," Max: ",maxg
:EndWhile
:ming:=ming+2*dbandg
:maxg:=maxg-2*dbandg
:DispAt 3,"Gas: min:",ming," max: ",maxg
:DispAt 4,"Move Steer to Left, then Right."
:While getKey()=""
: Send "READ ANALOG.IN 2"
: Get steer
: If steer>maxs Then
: maxs:=steer
: ElseIf steer<mins Then
: mins:=steer
: EndIf
: DispAt 5,"Steer: ",steer," min: ",mins," max: ",maxs
:EndWhile
:mins:=mins+2*dbands
:maxs:=maxs-2*dbands
:DispAt 4,"Steer: min:",mins," max: ",maxs
:DispAt 5,"done!"
:EndPrgm

Step 2: calibrate min & max gas stick positions

Guardband to ensure max forward & backward speeds
in spite of PWM noise

Step 3: calibrate min & max steering stick positions

Guardband to ensure tightest turns in spite of PWM noise

10 | P a g e H M H M a r 2 2 , 2 0 2 0

Define main()=
Prgm
:Local dbug,gas,steer,backward,reverseg,reverses,mot,motl,motr
:
:Send "CONNECT ANALOG.IN 1 IN 1"
:Send "CONNECT ANALOG.IN 2 IN 2"
:
:Send "CONNECT RV"
:
:dbug:=false
:
:reverseg:=false
:reverses:=false
:
:backward:=false
:
:Disp "Running...! (dbug=)",dbug
:
:While getKey()=""
: mot:=0
: motl:=0
: motr:=0
: Send "READ ANALOG.IN 1"
: Get gas
: Send "READ ANALOG.IN 2"
: Get steer
: If gas≥dbandgh Then
: If reverseg=false Then
: backward:=false
: Else
: backward:=true
: EndIf
: mot:=map(gas,dbandgh,maxg,0,255)
: ElseIf gas≤dbandgl Then
: If reverseg=false Then
: backward:=true
: Else
: backward:=false
: EndIf
: mot:=map(gas,ming,dbandgl,255,0)
: Else
: mot:=0
: EndIf
: If steer≥dbandsh Then
: motl:=mot
: motr:=map(steer,dbandsh,maxs,mot,−mot)
: ElseIf steer≤dbandsl Then
: motr:=mot
: motl:=map(steer,mins,dbandsl,−mot,mot)
: Else
: motr:=mot
: motl:=mot
: EndIf
: If reverses=true Then
: mot:=motl
: motl:=motr
: motr:=mot
: EndIf

main Rover control program

Analog gas input
Analog steering input

Set dbug to ‘true’ to display key variables at run time, pls note this
will increase latency of the control loop!
Set to ‘true’ if gas stick reversal is needed
Set to ‘true’ if steering stick reversal is needed

Flag to indicate Rover being in backwards motion

Main loop
If Gas stick is in neutral, don’t move motors

Gas is exceeding center value + guardband
Check for stick reversal flag

Map gas stick value to motor PWM, forward motion
The same procedure for backward motion

Map gas stick value to motor PWM, backward motion

Don’t move motors if within center value +/- guardband

Voltage exceeds center value + guardband
Start a right turn, left wheel spins at ‘gas’ speed
Right wheel slows down or spins reverse, depending on stick
Same procedure on a left turn
Right wheel continues to spin at gas speed
Left wheel slows down or spins reverse

Right and left wheel spin at same speed, if steering stick is at
neutral

Steering stick reversal?
Yes: swap between left and right motors

11 | P a g e H M H M a r 2 2 , 2 0 2 0

: If dbug=true Then
: DispAt 1,"Gas ",mot
: DispAt 2,"backward: ",backward
: DispAt 3,"gas reverse: ",reverseg,", steer reverse: ",reverses
: DispAt 4,"motl: ",motl," motr: ",motr
: EndIf
: If backward=false Then
: Send "SET RV.MOTORS eval(-motl) eval(motr)"
: Else
: Send "SET RV.MOTORS eval(motl) eval(-motr)"
: EndIf
:EndWhile
:Send "SET RV.MOTORS 0 0"
:Send "DISCONNECT RV"
:EndPrgm

If debug flag is set,
Display gas stick motor value
Display forward/reverse flag value
Display stick reversal values
Display left and right motor values

Update spin speed of left and right motors

If any key is pressed on the HH, stop motors
And disconnect Hub from RV

Define map(x,in_min,in_max,out_min,out_max)=
Func
:
:If x<in_min Then
: x:=in_min
:EndIf
:If x>in_max Then
: x:=in_max
:EndIf
:
:Return int((((x-in_min)*(out_max-out_min))/(in_max-
in_min))+out_min)
:EndFunc

Range scaling/mapping function

Clamp input to in_min & in_max values to avoid mapping outside
given input range

Return mapped value

