Loi binomiale et seuil

TI-82 Advanced Edition Python TI-83 Premium CE Edition Python

Enoncé

Anne s'entraine régulièrement au tir à l'arc. Elle a remarqué que la probabilité de tirer dans le centre jaune de la cible (on dira aussi tirer dans le mille) est de 0,19 en toute circonstance.

Soit n le nombre de flèches lancées par Anne et X_n la variable aléatoire donnant le nombre de flèches qui ont atteint le centre jaune de la cible.

- 1. Quelle loi suit X_n ? Donner ses paramètres.
- 2. Dans cette question n=3, c'est-à-dire qu'Anne tire 3 flèches. Calculer les probabilités des événements suivants (à 10^{-3} près):
 - a. Tirer dans le mille 3 fois.
 - b. Ne jamais tirer dans le mille.
 - c. Tirer dans le mille 1 fois exactement.
- 3. Lors des n lancers on note : E_n l'événement « Anne n'a jamais tiré dans le mille » et F_n ; « Anne a tiré au moins une fois dans le mille ». Exprimer E_n et F_n à l'aide de X_n et calculer $P(E_n)$ et $P(F_n)$.
- 4. Représenter graphiquement le nuage de points $(n, p(F_n))$, $1 \le n \le 10$. Quelle tendance semble suivre ce nuage?
- 5. Compléter le script Python **seuil**, qui renvoie la plus petite valeur de n telle que $p(F_n) \ge 0.99$. Lancer cette fonction. Quelle valeur obtient-on?

1. Loi de X_n

Nous sommes en présence d'une expérience aléatoire à deux issues possibles : Tirer dans le mille ou son contraire (loi de Bernoulli) qu'on répète n fois de suite de façon indépendante. Ainsi X_n le nombre de succès, c'està-dire le nombre de fois où Anne vise dans le mille lors des n lancers, suit une loi binomiale de paramètres n et p=0.19.

2. Etude de X_3

a. L'événement « tirer dans le mille 3 fois » correspond à $X_3 = 3$.

Pour calculer cette probabilité on appuie sur valeurs de n et p puis la valeur de X recherchée qui est 3 ici.

lci on obtient $p(X_3 = 3) \approx 0.007$ à 10^{-3} près.


```
ÉDITEUR: ARC
LIGNE DU SCRIPT 0004

def seuil():
+-n=1
+-while 1-0.81**n<0.99:
+-+-n=....
--return n
```



Loi binomiale et seuil

TI-82 Advanced Edition Python -83 Premium CE

TI-83 Premium CE Edition Python

L'événement « ne jamais tirer dans le mille» correspond à $X_3=0$. On trouve $p(X_3=0)\approx 0.531$ à 10^{-3} près.

L'événement « tirer dans le mille 1 fois exactement» correspond à $X_3 = 1$. On a donc $p(X_3 = 1) \approx 0.374$ à 10^{-3} près.

3. Calcul de $p(E_n)$ et $p(F_n)$

L'événement E_n correspond à $X_n = 0$.

On a $p(E_n) = p(X_n = 0) = (1 - 0.19)^n = 0.81^n$.

L'événement F_n correspond à $\overline{E_n}$.

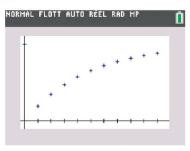
On a $p(F_n) = p(\overline{E_n}) = 1 - p(E_n) = 1 - 0.81^n$.

4. Graphique $(n, p(F_n))$

On appuie sur [stats] pour modifier les listes. Dans la liste L_1 on entre les valeurs de n de 1 à 10.

Dans L_2 on entrera les probabilités $p(F_n)$ pour les valeurs de k définies dans L_1 . On entre donc tout en haut de liste L_2 : $L_2=1-0.81^{L_1}$

Pour afficher le nuage de points : 2nde (flu) puis 200m 9



On constate que les valeurs de $p(F_n)$ semblent se rapprocher de 1 lorsque n augmente.

5. Fonction seuil

A chaque tour de boucle il faut augmenter la valeur de $\bf n$ jusqu'à obtenir la valeur qui dépasse 0,99 et qui arrête la boucle.

On trouve qu'à partir de **n=22** la probabilité $p(F_n)$ dépasse 0,99. On vérifie ce résultat en console.

